วันอาทิตย์ที่ 28 สิงหาคม พ.ศ. 2554

ใบความรู้ เรื่อง ร้อยละ ชั้นมัธยมศึกษาปีที่ 1

ใบความรู้
เรื่อง ร้อยละ
ชั้นมัธยมศึกษาปีที่
1

1. อัตราส่วน
ความสัมพันธ์ที่แสดงการเปรียบเทียบปริมาณสองปริมาณ

ซึ่งมีหน่วยเดียวกัน หรือหน่วยต่างกัน เรียกว่า “อัตราส่วน”
       นั่นคือ อัตราส่วนของปริมาณ a ต่อปริมาณ b เขียนแทนด้วย

a : b หรือ a/b
       เรียก a ว่า จำนวนแรกหรือจำนวนที่หนึ่งของอัตราส่วน
       เรียก b ว่า จำนวนหลังหรือจำนวนที่สองของอัตราส่วน
ข้อสังเกต
       เมื่อ a b แสดงว่า อัตราส่วน a : b ไม่ใช่อัตราส่วนเดียวกัน กับอัตราส่วน b : a ตัวอย่างเช่น
       อัตราส่วนของปริมาณไข่ไก่เป็นฟองต่อราคาเป็นบาท เป็น 7 : 28 ไม่ใช่อัตราส่วนเดียวกันกับ 28 : 7
       เพราะอัตราส่วน 7 : 28 หมายถึงปริมาณไข่ไก่ 7 ฟอง ราคา 28 บาท แต่ในขณะที่อัตราส่วน 28 : 7 หมายถึง ปริมาณไข่ไก่ 28 ฟอง ราคา 7 บาท
       นั่นคือ อัตราส่วน a : b ไม่ใช่อัตราส่วนเดียวกับ b : a




อัตราส่วนที่เท่ากัน
       รถยนต์คันหนึ่งวิ่งด้วยอัตราเร็ว 60 กิโลเมตรต่อชั่วโมง อัตราส่วนของเวลาที่ใช้วิ่ง (ชั่วโมง)
ต่อระยะทาง (กิโลเมตร) เป็นดังนี้
       1 : 60 , 2 : 120 , 3 : 180 , 4 : 240 , 5 : 300 ,…
       อัตราส่วนทั้งหมดเป็นอัตราส่วนที่แสดงอัตราเดียวกัน เรียกอัตราส่วนดังกล่าวว่า
อัตราส่วนที่เท่ากัน
ซึ่งเขียนได้ดังนี้ 1 : 60 = 2 : 120 = 3 : 180 = 4 : 240 = 5 : 300 หรือ




หลักการหาอัตราส่วนที่เท่ากัน มีดังนี้
-      หลักการคูณ  เมื่อคูณจำนวนแต่ละจำนวนในอัตราส่วนใดด้วยจำนวนเดียวกัน โดยที่จำนวนนั้นไม่เท่ากับศูนย์ จะได้อัตราส่วนใหม่ที่เท่ากับอัตราส่วนเดิม
-      หลักการหาร  เมื่อหารแต่ละจำนวนในอัตราส่วนใดด้วยจำนวนเดียวกัน โดยที่จำนวนนั้นไม่เท่ากับศูนย์ จะได้อัตราส่วนใหม่ที่เท่ากับอัตราส่วนเดิม

อัตราส่วนของหลายๆ จำนวน
       จากอัตราส่วนของจำนวนหลายๆ จำนวน a : b : c เราสามารถเขียนอัตราส่วนของจำนวนทีละสองจำนวนได้เป็น a : b และ b : c เมื่อ m แทนจำนวนใดๆ
       จะได้ว่า    a : b       =     am : bm
       และ         b : c        =     bm : cm
       ดังนั้น  a : b : c       =     am : bm : cm ; เมื่อ m แทนจำนวนบวก
       ถ้ามีอัตราส่วนของจำนวนที่มากกว่าสามจำนวนก็สามารถใช้หลักการเดียวกันนี้ เช่น
       a : b : c : d  =  am : bm : cm : dm ; เมื่อ m แทนจำนวนบวก



2.ร้อยละ
       คำว่า ร้อยละ หรือเปอร์เซ็น เป็นอัตราส่วนแสดงการเรียบเทียบปริมาณใด
ปริมาณหนึ่งต่อ
100
       เช่น  ร้อยละ 50 หรือ 50%
       เขียนแทนด้วย  50 : 100 หรือ 50/100

การเขียนร้อยละให้เป็นอัตราส่วน
       ทำได้โดยเขียนเป็นอัตราส่วนที่มีจำนวนแรกเป็นค่าของร้อยละ
และจำนวนหลังเป็น
100
เช่น         33%       =     33/100
               6%        
=      6/100           0.01%        =     0.1/100  หรือ  1/1000
               
การแก้โจทย์ปัญหาเกี่ยวกับร้อยละ
       ตัวอย่าง  ในหมู่บ้านแห่งหนึ่งมีคนอาศัยอยู่ 1,200 คน 6% ของจำนวนคนทั้งหมด ที่อยู่ในหมู่บ้านนี้ทำงานในโรงงานสับปะรดกระป๋อง จงหาจำนวนคนที่ทำงานในโรงงานสับปะรดกระป๋อง
วิธีทำ       ให้จำนวนคนที่ทำงานในโรงงานสับปะรดกระป๋องเป็น X คน
                อัตราส่วนของจำนวนคนที่ทำงานในโรงงานต่อคนจำนวนคนทั้งหมดเป็น  X/1200                อัตราส่วนดังกล่าวคิดเป็น 6% =  6/100
                เขียนสัดส่วนได้ดังนี้  X/1200  =  6/100
                                       จะได้   X (100)  =  1200 x 6
                                                          X    =   1200 x 6 / 100
                                       ดังนั้น         X    =    72
              นั่นคือ จำนวนคนงานที่ทำงานในโรงงานสับปะรดกระป๋องเป็น 72 คน                                                                                                                                                                                        Ans.


ไม่มีความคิดเห็น:

แสดงความคิดเห็น